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Abstract

Conjugated dienes were successfully aziridinated using a nitridomanganese complex as a nitrogen source.
The reaction proceeded selectively and in good yield via [2+1] addition to give alkenylaziridines, with no
evidence for the formation of any [4+1] addition products. The ®rst asymmetric version of the reaction was
revealed in the aziridination of diene 5 with chiral complex 1. # 2000 Elsevier Science Ltd. All rights
reserved.
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Alkenylaziridines are well known as useful building blocks, which can be converted to allylamines
via regioselective ring opening reactions1 and to pyrroline derivatives by means of ring expansion
reactions,2 and have been applied to the synthesis of a variety of natural products.3 Typically,
several steps are required for the synthesis of alkenylaziridines.4 Although there are many reports
of one-step synthesis by the direct addition of nitrenes to 1,3-dienes, problems are often encountered
with the photolysis or thermolysis of azides, resulting in the formation of a variety of by-
products.5 The reaction of conjugated dienes with [N-(p-toluenesulfonyl)imino]phenyliodinane,
PhI�NTs, a potent reagent for metal-catalyzed nitrogen atom transfer to ole®ns,6,7 has often
been observed to give mixtures of alkenylaziridines and pyrroline derivatives.8 More recently, we
reported an alternative and unique nitrogen source, a chiral nitridomanganese complex, for the
asymmetric aziridination of styrene derivatives.9,10 From these points of view, we report herein
some aziridination reactions of conjugated dienes with a nitrido complex, wherein alkenylaziridine
derivatives (via a [2+1] addition) are selectively produced without the formation of pyrroline
derivatives (via a [4+1] addition).
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When 2,3-dimethyl-1,3-butadiene (2, 10 equiv.) was treated with racemic nitridomanganese
complex 1 in methylene chloride at 0�C for 2 h in the presence of Ts2O (1.2 equiv.), pyridine (0.5
equiv.) and pyridine N-oxide (1.2 equiv.), N-(p-toluenesulfonyl)-2-methyl-2-(2-propenyl)aziridine
(3) was obtained in 67% yield.11 No bisaziridinated product was detected. The reaction
proceeded selectively via a [2+1] type addition, with no detectable formation of the [4+1] addition
product, a pyrroline derivative.

�1�

The present aziridination with the nitrido complex 1 was successfully applied to a range of
unfunctionalized 1,3-dienes, as shown in Table 1. Cyclic conjugated dienes were smoothly
aziridinated under mild conditions with no evidence of [4+1] adducts (entries 1±4). Of the
compounds examined, the 1,3-dienes, which are embedded in six- and seven-membered rings,
reacted with complex 1 with high e�ciency. In the case of an acyclic diene, such as 2,5-dimethyl-
2,4-hexadiene, the corresponding aziridine was obtained as the major product, along with its
isomeric product, a homodienyl amine 4 (entry 5). When unsymmetrical dienes were employed in
the reaction, the less substituted double bonds were preferentially aziridinated (entries 6 and 7). It
is noteworthy in this respect that the aziridination of trans-1,3-hexadiene took place selectively at
the terminal ole®n (entry 7). The reason for the preference for aziridination at the less hindered
double bond can be explained by the bulkiness of the reactive intermediate10a,f derived from
nitridomanganese complex 1. The chemoselectivity opposite to our results was reported in the
case of the copper-catalyzed aziridination of 1,3-dienes with PhI�NTs, where the selectivity was
explained by the electron density of each double bond in the conjugated dienes.8

Since the nitridomanganese complex 1 was found to be a very useful reagent for the aziridina-
tion of 1,3-dienes, chiral complex 1 was applied to the reaction. Treatment of 2-tert-butyl-1,3-
butadiene (5) with (R,R)-complex 1 gave two regioisomeric alkenylaziridines in a ratio of 62:38.
Although the enantioselectivity of the major isomer 6 was moderate (40% ee) at the present stage,
this is the ®rst example of the successful reagent-controlled direct asymmetric aziridination of a
conjugated diene.12
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In summary, we report here, for the ®rst time, on the use of a nitridomanganese complex as a
nitrogen transfer reagent for the aziridination of conjugated dienes. The present reaction
selectively proceeded with [2+1] type addition to a�ord alkenylaziridines. Having found a basis for
the asymmetric aziridination of 1,3-dienes, a search for more e�cient reactions is presently in
progress.
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